CHAPTER 5

Energy Bands in Crystals




5.1. One-Dimensional Zone Schemes
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Reduced zone scheme.
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if an electron propagates in a periodic potential

we always observe discontinuities of the energies when
cos kya has a maximum or a minimum, 1.e., when cosk,a = +1

kca=nn, n= +1, +2,+3, ...,
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Periodic Zone Scheme
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Periodic Zone Scheme
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Reduced zone scheme.
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Extended zone scheme.

electrons in a crystal behave, for most k, values, like free electrons, except
when k, approaches the value n - /a.
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Extended zone scheme.

electrons in a crystal behave, for most k, values, like free electrons, except
when k, approaches the value n - n/a.
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5.2. One- and Two-Dimensional Brillouin Zones
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5.2. One- and Two-Dimensional Brillouin Zones
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Bragg relation
2asinf=ni, n=123,...
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*5.3. Three-Dimensional Brillouin Zones

e

vai




*5.4. Wigner—Seitz Cells

The Wigner—Seitz cell is a special type of primitive unit cell that shows
the cubic symmetry of the cubic cells. For its construction, one bisects the
vectors from a given atom to its nearest neighbors and places a plane per-

pendicular to these vectors at the bisecting points.
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5.5. Translation Vectors and the Reciprocal Lattice

tl, t2, and t3 are basis vector of a primitive unit cell.

By combination of these “primitive vectors’” a trans-
lation vector,

R = nit) + naty + nsts,

can be defined.
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the fundamental vectors by, by, and b; of the reciprocal lattice in terms of
real lattice vectors.

For BCC structure
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the reciprocal lattice points of the fcc structure and the real lattice points of
the bee structure are identical.
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First Brillouin zone of the bcc crystal structure.
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5.6. Free Electron Bands

because of the E(k) periodicity

the energy E,: for k' outside the first
zone is 1dentical to the energy Ex within the first zone if a suitable translation
vector G can be found so that a wave vector k' becomes
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Energy bands of the free electrons for the bce structure.

[ — H direction

vector kry = k, between 0 and 27 /a

2 2
£~ (Zxi+6)

=2m a

x may take values between 0 and 1

let G be 0.—>(000)

2 2
E h (%E) (xi)z = Cx2 C— h? (27:) =2h27t2

o 2'm a 2m \ a ma?

§9Qqay, March 13,



G = 27t(h1b1 + hyby + h3b3)
let hy =0, hh = —1,and A3 =0
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Eneregv bands of the free electrons for the bcc structure.
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The free electron bands are very useful for the following reason: by com-
paring them with the band structures of actual materials, an assessment is
possible if and to what degree the electrons in that material can be consid-

ered to be free.

First Brillouin zone of the fcc structure
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Free electron bands of the fcc structure
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5.7. Band Structures for Some Metals and

Semiconductors
Energy bands for aluminum.
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individual energy bands overlap in different directions in k-space, so that as

a whole no band gap exists.
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band structure for copper
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Calculated energy band structure of silicon
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Calculated energy band structure of GaAs.
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5.8. Curves and Planes of Equal Energy

ol |

Curves of equal energy inserted into the first Brillouin zone for a two-

dimensional square lattice.
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Conclusions

A particular surface of equal energy
the first Brillouin zone for copper.

For copper and aluminum the band overlapping leads to quas-i-continuous allowed en-
ergies (in different directions of k-space).

For semiconductors the band overlapping is not complete, which results in the already-mentioned energy
gap
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